EconPapers    
Economics at your fingertips  
 

Classification of QRS complexes to detect Premature Ventricular Contraction using machine learning techniques

Fabiola De Marco, Filomena Ferrucci, Michele Risi and Genoveffa Tortora

PLOS ONE, 2022, vol. 17, issue 8, 1-19

Abstract: Detection of Premature Ventricular Contractions (PVC) is of crucial importance in the cardiology field, not only to improve the health system but also to reduce the workload of experts who analyze electrocardiograms (ECG) manually. PVC is a non-harmful common occurrence represented by extra heartbeats, whose diagnosis is not always easily identifiable, especially when done by long-term manual ECG analysis. In some cases, it may lead to disastrous consequences when associated with other pathologies. This work introduces an approach to identify PVCs using machine learning techniques without feature extraction and cross-validation techniques. In particular, a group of six classifiers has been used: Decision Tree, Random Forest, Long-Short Term Memory (LSTM), Bidirectional LSTM, ResNet-18, MobileNetv2, and ShuffleNet. Two types of experiments have been performed on data extracted from the MIT-BIH Arrhythmia database: (i) the original dataset and (ii) the balanced dataset. MobileNetv2 came in first in both experiments with high performance and promising results for PVCs’ final diagnosis. The final results showed 99.90% of accuracy in the first experiment and 99.00% in the second one, despite no feature detection techniques were used. The approach we used, which was focused on classification without using feature extraction and cross-validation techniques, allowed us to provide excellent performance and obtain better results. Finally, this research defines as first step toward understanding the explanations for deep learning models’ incorrect classifications.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268555 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68555&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0268555

DOI: 10.1371/journal.pone.0268555

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0268555