EconPapers    
Economics at your fingertips  
 

Using forensic analytics and machine learning to detect bribe payments in regime-switching environments: Evidence from the India demonetization

Ben Charoenwong and Pooja Reddy

PLOS ONE, 2022, vol. 17, issue 6, 1-14

Abstract: We use a rich set of transaction data from a large retailer in India and a dataset on bribe payments to train random forest and XGBoost models using empirical measures guided by Benford’s Law, a commonly used tool in forensic analytics. We evaluate the performance around the 2016 Indian Demonetization, which affects the distribution of legal tender notes in India, and find that models using only pre-2016 data or post-2016 data for both training and testing data had F1 score ranges around 90%, suggesting that these models and Benford’s law criteria contain meaningful information for detecting bribe payments. However, the performance for models trained in one regime and tested in another falls dramatically to less than 10%, highlighting the role of the institutional setting when using financial data analytics in an environment subject to regime shifts.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268965 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68965&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0268965

DOI: 10.1371/journal.pone.0268965

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0268965