EconPapers    
Economics at your fingertips  
 

An effective up-sampling approach for breast cancer prediction with imbalanced data: A machine learning model-based comparative analysis

Tuan Tran, Uyen Le and Yihui Shi

PLOS ONE, 2022, vol. 17, issue 5, 1-30

Abstract: Early detection of breast cancer plays a critical role in successful treatment that saves thousands of lives of patients every year. Despite massive clinical data have been collected and stored by healthcare organizations, only a small portion of the data has been used to support decision-making for treatments. In this study, we proposed an engineered up-sampling method (ENUS) for handling imbalanced data to improve predictive performance of machine learning models. Our experiment results showed that when the ratio of the minority to the majority class is less than 20%, training models with ENUS improved the balanced accuracy 3.74%, sensitivity 8.36% and F1 score 3.83%. Our study also identified that XGBoost Tree (XGBTree) using ENUS achieved the best performance with an average balanced accuracy of 97.47% (min = 93%, max = 100%), sensitivity of 97.88% (min = 89% and max = 100%), and F1 score of 96.20% (min = 89.5%, max = 100%) in the validation dataset. Furthermore, our ensemble algorithm identified Cell_Shape and Nuclei as the most important attributes in predicting breast cancer. The finding re-affirms the previous knowledge of the relationship between Cell_Shape, Nuclei, and the grades of breast cancer using a data-driven approach. Finally, our experiment showed that Random Forest and Neural Network models had the least training time. Our study provided a comprehensive comparison of a wide range of machine learning methods in predicting breast cancer risk. It can be used as a tool for healthcare practitioners to effectively detect and treat breast cancer.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269135 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 69135&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0269135

DOI: 10.1371/journal.pone.0269135

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0269135