DOPE++: 6D pose estimation algorithm for weakly textured objects based on deep neural networks
Mei Jin,
Jiaqing Li and
Liguo Zhang
PLOS ONE, 2022, vol. 17, issue 6, 1-21
Abstract:
This paper focuses on 6D pose estimation for weakly textured targets from RGB-D images. A 6D pose estimation algorithm (DOPE++) based on a deep neural network for weakly textured objects is proposed to solve the poor real-time pose estimation and low recognition efficiency in the robot grasping process of parts with weak texture. More specifically, we first introduce the depthwise separable convolution operation to lighten the original deep object pose estimation (DOPE) network structure to improve the network operation speed. Second, an attention mechanism is introduced to improve network accuracy. In response to the low recognition efficiency of the original DOPE network for parts with occlusion relationships and the false recognition problem in recognizing parts with scales that are too large or too small, a random mask local processing method and a multiscale fusion pose estimation module are proposed. The results show that our proposed DOPE++ network improves the real-time performance of 6D pose estimation and enhances the recognition of parts at different scales without loss of accuracy. To address the problem of a single background representation of the part pose estimation dataset, a virtual dataset is constructed for data expansion to form a hybrid dataset.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269175 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 69175&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0269175
DOI: 10.1371/journal.pone.0269175
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().