EconPapers    
Economics at your fingertips  
 

Can Machine Learning classifiers be used to regulate nutrients using small training datasets for aquaponic irrigation?: A comparative analysis

Sambandh Bhusan Dhal, Muthukumar Bagavathiannan, Ulisses Braga-Neto and Stavros Kalafatis

PLOS ONE, 2022, vol. 17, issue 8, 1-15

Abstract: With the recent advances in the field of alternate agriculture, there has been an ever-growing demand for aquaponics as a potential substitute for traditional agricultural techniques for improving sustainable food production. However, the lack of data-driven methods and approaches for aquaponic cultivation remains a challenge. The objective of this research is to investigate statistical methods to make inferences using small datasets for nutrient control in aquaponics to optimize yield. In this work, we employed the Density-Based Synthetic Minority Over-sampling TEchnique (DB-SMOTE) to address dataset imbalance, and ExtraTreesClassifer and Recursive Feature Elimination (RFE) to choose the relevant features. Synthetic data generation techniques such as the Monte-Carlo (MC) sampling techniques were used to generate enough data points and different feature engineering techniques were used on the predictors before evaluating the performance of kernel-based classifiers with the goal of controlling nutrients in the aquaponic solution for optimal growth.[27–35]

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269401 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 69401&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0269401

DOI: 10.1371/journal.pone.0269401

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0269401