EconPapers    
Economics at your fingertips  
 

A study on a vehicle semi-active suspension control system based on road elevation identification

Zhengcai Yang, Chuan Shi, Yinglin Zheng and Shirui Gu

PLOS ONE, 2022, vol. 17, issue 6, 1-27

Abstract: A semi-active suspension system can effectively improve vehicle ride comfort and handling stability, and the active detection of road information is key to achieving semi-active suspension. To improve the road elevation perception ability of vehicles, this study proposes a continuous multiple scanning recursive matching algorithm based on a single-line LIDAR sensor. Radar recursive scanning is used to obtain the multiple superposition data of echo signals, and coordinate matching is realized between historical scanning data and current scanning data. Simultaneously, the sensor height deviation and pitch angle deviation of the sensors are regressed to obtain an accurate pavement elevation. Considering the control effect of the active vehicle suspension, a vehicle suspension model with seven degrees of freedom is established. The semi-active suspension controller is constructed using a diagonal recursive neural network algorithm, and the neural network weight is trained using a genetic algorithm. In addition, a preview diagonal recursive neural network control strategy for semi-active suspension, based on the combination of road elevation information, is proposed. The results of a hardware-in-the-loop co-simulation, which was conducted based on the Simulink control model and dSPACE real-time simulation, revealed that the ride comfort and stability of the vehicle were improved owing to a preview of the elevation information of the road ahead and the active adjustment of the shock absorber of the suspension system.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269406 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 69406&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0269406

DOI: 10.1371/journal.pone.0269406

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0269406