EconPapers    
Economics at your fingertips  
 

Using text data instead of SIC codes to tag innovative firms and classify industrial activities

Alessandro Marra and Cristiano Baldassari

PLOS ONE, 2022, vol. 17, issue 6, 1-21

Abstract: The paper uses text mining and semantic algorithms to tag innovative firms and offer an alternative perspective to classify industrial activities. Instead of referring to firms’ standard industrial classification codes, we gather information from companies’ websites and corporate purposes, extract keywords and generate tags concerning firms’ activities, specializations, and competences. Evidence is interesting because allows us to understand ‘what firms do’ in a more penetrating and updated way than referring to standard industrial classification codes. Moreover, through matching firms’ keywords, we can explore the degree of closeness between the firms under observation, a measure by which researchers can derive industrial proximity. The analysis can provide policymakers with a detailed and comprehensive picture of the innovative trajectories underlying the industrial structure in a geographic area.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270041 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 70041&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0270041

DOI: 10.1371/journal.pone.0270041

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-04-29
Handle: RePEc:plo:pone00:0270041