A framework for effective face-mask contact modeling based on finite element analysis for custom design of a facial mask
Yun-Jae Kwon,
Jin-Gyun Kim and
Wonsup Lee
PLOS ONE, 2022, vol. 17, issue 7, 1-19
Abstract:
A novel contact model is presented to efficiently solve a face-mask contact problem by using the finite element (FE) method for the optimized design of a custom facial mask. Simulation of contact pressure for various mask designs considering material properties of the face allows virtual evaluation of the suitability of a mask design for a person’s face without conducting empirical measurement of the face-mask contact pressure. The proposed contact model is accomplished by combining three approaches to reduce the calculation cost of simulating the face-mask contact: (1) use of a simplified and modifiable mask model that applies a spline curve to design points; (2) reduction of the FE model of the face by applying static condensation; and (3) application of a contact assumption that uses the Lagrange multiplier method. A numerical case study of a medical mask design showed that the proposed model could calculate the face-mask contact pressure efficiently (0.0448 sec per design). In a pilot usability experiment, the measured contact pressure was found similar values (range of mean contact pressure: 0.0093 ~ 0.0150 MPa) to the estimated values (range of mean contact pressure: 0.0097 ~ 0.0116 MPa).
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270092 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 70092&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0270092
DOI: 10.1371/journal.pone.0270092
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().