EconPapers    
Economics at your fingertips  
 

A new approach to constructing confidence intervals for population means based on small samples

Hao-Chun Lu, Yan Xu, Tom Lu and Chun-Jung Huang

PLOS ONE, 2022, vol. 17, issue 8, 1-17

Abstract: This paper presents a new approach to constructing the confidence interval for the mean value of a population when the distribution is unknown and the sample size is small, called the Percentile Data Construction Method (PDCM). A simulation was conducted to compare the performance of the PDCM confidence interval with those generated by the Percentile Bootstrap (PB) and Normal Theory (NT) methods. Both the convergence probability and average interval width criterion are considered when seeking to find the best interval. The results show that the PDCM outperforms both the PB and NT methods when the sample size is less than 30 or a large population variance exists.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271163 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 71163&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0271163

DOI: 10.1371/journal.pone.0271163

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-04-29
Handle: RePEc:plo:pone00:0271163