EconPapers    
Economics at your fingertips  
 

Predicting technological innovation in new energy vehicles based on an improved radial basis function neural network for policy synergy

Ying Hao, Mingshun Guo and Yijing Guo

PLOS ONE, 2022, vol. 17, issue 8, 1-16

Abstract: Policy synergy is necessary to promote technological innovation and sustainable industrial development. A radial basis function (RBF) neural network model with an automatic coding machine and fractional momentum was proposed for the prediction of technological innovation. Policy keywords for China’s new energy vehicle policies issued over the years were quantified by the use of an Latent Dirichlet Allocation (LDA) model. The training of the neural network model was completed by using policy keywords, synergy was measured as the input layer, and the number of synchronous patent applications was measured as the output layer. The predictive efficacies of the traditional neural network model and the improved neural network model were compared again to verify the applicability and accuracy of the improved neural network. Finally, the influence of the degree of synergy on technological innovation was revealed by changing the intensity of policy measures. This study provides a basis for the relevant departments to formulate industrial policies and improve innovation performance by enterprises.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271316 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 71316&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0271316

DOI: 10.1371/journal.pone.0271316

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0271316