Grading detection of “Red Fuji” apple in Luochuan based on machine vision and near-infrared spectroscopy
Jin Wang,
Yujia Huo,
Yutong Wang,
Haoyu Zhao,
Kai Li,
Li Liu and
Yinggang Shi
PLOS ONE, 2022, vol. 17, issue 8, 1-25
Abstract:
A quality detection system for the “Red Fuji” apple in Luochuan was designed for automatic grading. According to the Chinese national standard, the grading principles of apple appearance quality and Brix detection were determined. Based on machine vision and image processing, the classifier models of apple defect, contour, and size were constructed. And then, the grading thresholds were set to detect the defective pixel ratio t, aspect ratio λ, and the cross-sectional diameter Wp in the image of the apple. Spectral information of apples in the wavelength range of 400 nm~1000 nm was collected and the multiple scattering correction (MSC) and standard normal variable (SNV) transformation methods were used to preprocess spectral reflectance data. The competitive adaptive reweighted sampling (CARS) algorithm and the successive projections algorithm (SPA) were used to extract characteristic wavelength points containing Brix information, and the CARS-PLS (partial least squares) algorithm was used to establish a Brix prediction model. Apple defect, contour, size, and Brix were combined as grading indicators. The apple quality online grading detection platform was built, and apple’s comprehensive grading detection algorithm and upper computer software were designed. The experiments showed that the average accuracy of apple defect, contour, and size grading detection was 96.67%, 95.00%, and 94.67% respectively, and the correlation coefficient Rp of the Brix prediction set was 0.9469. The total accuracy of apple defect, contour, size, and Brix grading was 96.67%, indicating that the detection system designed in this paper is feasible to classify “Red Fuji” apple in Luochuan.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271352 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 71352&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0271352
DOI: 10.1371/journal.pone.0271352
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().