Phenotypic screening using waveform analysis of synchronized calcium oscillations in primary cortical cultures
Richi Sakaguchi,
Saki Nakamura,
Hiroyuki Iha and
Masaki Tanaka
PLOS ONE, 2023, vol. 18, issue 4, 1-13
Abstract:
At present, in vitro phenotypic screening methods are widely used for drug discovery. In the field of epilepsy research, measurements of neuronal activities have been utilized for predicting efficacy of anti-epileptic drugs. Fluorescence measurements of calcium oscillations in neurons are commonly used for measurement of neuronal activities, and some anti-epileptic drugs have been evaluated using this assay technique. However, changes in waveforms were not quantified in previous reports. Here, we have developed a high-throughput screening system containing a new analysis method for quantifying waveforms, and our method has successfully enabled simultaneous measurement of calcium oscillations in a 96-well plate. Features of waveforms were extracted automatically and allowed the characterization of some anti-epileptic drugs using principal component analysis. Moreover, we have shown that trajectories in accordance with the concentrations of compounds in principal component analysis plots were unique to the mechanism of anti-epileptic drugs. We believe that an approach that focuses on the features of calcium oscillations will lead to better understanding of the characteristics of existing anti-epileptic drugs and allow to predict the mechanism of action of novel drug candidates.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271782 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 71782&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0271782
DOI: 10.1371/journal.pone.0271782
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().