EconPapers    
Economics at your fingertips  
 

Optimal location of logistics distribution centres with swarm intelligent clustering algorithms

Tsung-Xian Lin, Zhong-huan Wu and Wen-Tsao Pan

PLOS ONE, 2022, vol. 17, issue 8, 1-16

Abstract: A clustering algorithm is a solution for grouping a set of objects and for distribution centre location problems. But the common K-means clustering algorithm may give local optimal solutions. Swarm intelligent algorithms simulate the social behaviours of animals and avoid local optimal solutions. We employ three swarm intelligent algorithms to avoid these solutions. We propose a new algorithm for the clustering problem, the fruit-fly optimization K-means algorithm (FOA K-means). We designed a distribution centre location problem and three clustering indicators to evaluate the performance of algorithms. We compare the algorithms of K-means with the ant colony optimization algorithm (ACO K-means), particle swarm optimization algorithm (PSO K-means), and fruit-fly optimization algorithm. We find K-Means modified by the fruit-fly optimization algorithm (FOA K-means) has the best performance on convergence speed and three clustering indicators, compactness, separation, and integration. Thus, we can apply FOA K-means to improve the distribution centre location solution and the efficiency for distribution in the future.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271928 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 71928&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0271928

DOI: 10.1371/journal.pone.0271928

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0271928