EconPapers    
Economics at your fingertips  
 

Burst ratio for a versatile traffic model

Andrzej Chydzinski

PLOS ONE, 2022, vol. 17, issue 8, 1-19

Abstract: We deal with a finite-buffer queue, in which arriving jobs are subject to loss due to buffer overflows. The burst ratio parameter, which reflects the tendency of losses to form long series, is studied in detail. Perhaps the most versatile model of the arrival stream is used, i.e. the batch Markovian arrival process (BMAP). Among other things, it enables modeling the interarrival time density function, the interarrival time autocorrelation function and batch arrivals. The main contribution in an exact formula for the burst ratio in a queue with BMAP arrivals and arbitrary service time distribution. The formula is presented in an explicite, ready-to-use form. Additionally, the impact of various system parameters on the burst ratio is demonstrated in numerical examples. The primary application area of the results is computer networking, where the complex nature of traffic has a deep impact on the burst ratio. However, due to the versatile arrival model, the results can be applied in other fields as well.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272263 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 72263&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0272263

DOI: 10.1371/journal.pone.0272263

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0272263