EconPapers    
Economics at your fingertips  
 

Secure deep learning for distributed data against malicious central server

Le Trieu Phong

PLOS ONE, 2022, vol. 17, issue 8, 1-15

Abstract: In this paper, we propose a secure system for performing deep learning with distributed trainers connected to a central parameter server. Our system has the following two distinct features: (1) the distributed trainers can detect malicious activities in the server; (2) the distributed trainers can perform both vertical and horizontal neural network training. In the experiments, we apply our system to medical data including magnetic resonance and X-ray images and obtain approximate or even better area-under-the-curve scores when compared to the existing scores.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272423 (text/html)
https://journals.plos.org/plosone/article?id=10.13 ... 72423&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0272423

DOI: 10.1371/journal.pone.0272423

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0272423