EconPapers    
Economics at your fingertips  
 

MA-CharNet: Multi-angle fusion character recognition network

Qingyu Wang, Jing Liu, Ziqi Zhu and Chunhua Deng

PLOS ONE, 2022, vol. 17, issue 8, 1-18

Abstract: Irregular text recognition of natural scene is a challenging task due to large span of character angles and morphological diversity of a word. Recent work first rectifies curved word region, and then employ sequence algorithm to complete the recognition task. However, this strategy largely depends on rectification quality of the text region, and cannot be applied to large difference between tilt angles of character. In this work, a novel anchor-free network structure of rotating character detection is proposed, which includes multiple sub-angle domain branch networks, and the corresponding branch network can be selected adaptively according to character tilt angle. Meanwhile, a curvature Adaptive Text linking method is proposed to connect the discrete strings detected on the two-dimensional plane into words according to people’s habits. We achieved state-of-the-art performance on two irregular texts (TotalText, CTW1500), outperforming state-of-the-art by 2.4% and 2.7%, respectively. The experimental results demonstrate the effectiveness of the proposed algorithm.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272601 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 72601&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0272601

DOI: 10.1371/journal.pone.0272601

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0272601