A deep learning–based algorithm for tall cell detection in papillary thyroid carcinoma
Sebastian Stenman,
Nina Linder,
Mikael Lundin,
Caj Haglund,
Johanna Arola and
Johan Lundin
PLOS ONE, 2022, vol. 17, issue 8, 1-14
Abstract:
Introduction: According to the World Health Organization, the tall cell variant (TCV) is an aggressive subtype of papillary thyroid carcinoma (PTC) comprising at least 30% epithelial cells two to three times as tall as they are wide. In practice, applying this definition is difficult causing substantial interobserver variability. We aimed to train a deep learning algorithm to detect and quantify the proportion of tall cells (TCs) in PTC. Methods: We trained the deep learning algorithm using supervised learning, testing it on an independent dataset, and further validating it on an independent set of 90 PTC samples from patients treated at the Hospital District of Helsinki and Uusimaa between 2003 and 2013. We compared the algorithm-based TC percentage to the independent scoring by a human investigator and how those scorings associated with disease outcomes. Additionally, we assessed the TC score in 71 local and distant tumor relapse samples from patients with aggressive disease. Results: In the test set, the deep learning algorithm detected TCs with a sensitivity of 93.7% and a specificity of 94.5%, whereas the sensitivity fell to 90.9% and specificity to 94.1% for non-TC areas. In the validation set, the deep learning algorithm TC scores correlated with a diminished relapse-free survival using cutoff points of 10% (p = 0.044), 20% (p
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272696 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 72696&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0272696
DOI: 10.1371/journal.pone.0272696
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().