Diagnosis of temporomandibular disorders using artificial intelligence technologies: A systematic review and meta-analysis
Nayansi Jha,
Kwang-sig Lee and
Yoon-Ji Kim
PLOS ONE, 2022, vol. 17, issue 8, 1-18
Abstract:
Background: Artificial intelligence (AI) algorithms have been applied to diagnose temporomandibular disorders (TMDs). However, studies have used different patient selection criteria, disease subtypes, input data, and outcome measures. Resultantly, the performance of the AI models varies. Objective: This study aimed to systematically summarize the current literature on the application of AI technologies for diagnosis of different TMD subtypes, evaluate the quality of these studies, and assess the diagnostic accuracy of existing AI models. Materials and methods: The study protocol was carried out based on the preferred reporting items for systematic review and meta-analysis protocols (PRISMA). The PubMed, Embase, and Web of Science databases were searched to find relevant articles from database inception to June 2022. Studies that used AI algorithms to diagnose at least one subtype of TMD and those that assessed the performance of AI algorithms were included. We excluded studies on orofacial pain that were not directly related to the TMD, such as studies on atypical facial pain and neuropathic pain, editorials, book chapters, and excerpts without detailed empirical data. The risk of bias was assessed using the QUADAS-2 tool. We used Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) to provide certainty of evidence. Results: A total of 17 articles for automated diagnosis of masticatory muscle disorders, TMJ osteoarthrosis, internal derangement, and disc perforation were included; they were retrospective studies, case-control studies, cohort studies, and a pilot study. Seven studies were subjected to a meta-analysis for diagnostic accuracy. According to the GRADE, the certainty of evidence was very low. The performance of the AI models had accuracy and specificity ranging from 84% to 99.9% and 73% to 100%, respectively. The pooled accuracy was 0.91 (95% CI 0.76–0.99), I2 = 97% (95% CI 0.96–0.98), p
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272715 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 72715&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0272715
DOI: 10.1371/journal.pone.0272715
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().