EconPapers    
Economics at your fingertips  
 

Identifying single-item faked responses in personality tests: A new TF-IDF-based method

Alberto Purpura, Dora Giorgianni, Graziella Orrù, Giulia Melis and Giuseppe Sartori

PLOS ONE, 2022, vol. 17, issue 8, 1-16

Abstract: Faking in a psychological test is often observed whenever an examinee may gain an advantage from it. Although techniques are available to identify a faker, they cannot identify the specific questions distorted by faking. This work evaluates the effectiveness of term frequency-inverse document frequency (TF-IDF)—an information retrieval mathematical tool used in search engines and language representations—in identifying single-item faked responses. We validated the technique on three datasets containing responses to the 10-item Big Five questionnaire (total of 694 participants, respectively 221, 243, and 230) in three faking situations. Each participant responded twice, once faking to achieve an objective in one of three contexts (one to obtain child custody and two to land a job) and once honestly. The proposed TF-IDF model has proven very effective in separating honest from dishonest responses—with the honest ones having low TF-IDF values and the dishonest ones having higher values—and in identifying which of the 10 responses to the questionnaire were distorted in the dishonest condition. We also provide examples of the technique in a single-case evaluation.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272970 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 72970&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0272970

DOI: 10.1371/journal.pone.0272970

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0272970