Monitoring and early warning of a metal mine tailings pond based on a deep learning bidirectional recurrent long and short memory network
Zhanjie Jing and
Xiaohong Gao
PLOS ONE, 2022, vol. 17, issue 10, 1-15
Abstract:
The effective monitoring and early warning capability of metal mine tailings ponds can improve the associated safety risk management level. The infiltration line is an important core index of tailings pond stability. In this paper, a tailings pond monitoring and early warning system, which provides technical support for the design and daily management of tailings reservoir early warning systems, is constructed. Based on a deep learning bidirectional recurrent long and short memory network, an infiltration line prediction model with univariate input and an infiltration line prediction model with multivariate input are proposed. The data adopted are those from four monitoring points of the same cross-section at different positions and data from one adjacent internal lateral displacement and internal vertical displacement monitoring point. Using the adaptive moment estimation (Adam) optimization algorithm and the root mean square error (RMSE) model evaluation metric, the multilayer perceptron model, univariate input model, and multivariate input model are compared. This work shows that their RMSEs are 0.10611, 0.09966, and 0.11955, respectively.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273073 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 73073&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0273073
DOI: 10.1371/journal.pone.0273073
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().