Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation
Jin Wu,
Yong Liu,
Yuanpei Zhu and
Zun Li
PLOS ONE, 2022, vol. 17, issue 8, 1-16
Abstract:
Extracting features of retinal vessels from fundus images plays an essential role in computer-aided diagnosis of diseases, such as diabetes, hypertension, and cerebrovascular diseases. Although a number of deep learning-based methods have been used in this field, the accuracy of retinal vessel segmentation remains challenging due to limited densely annotated data, inter-vessel differences, and structured prediction problems, especially in areas of small blood vessels and the optic disk. In this paper, we propose an ARN model with a atrous block to address these issues, which can avoid the loss of data structure, and enlarge the receptive field, so that each convolution output contains a larger range of information. In addition, we also introduce residual convolution network to increase the network depth and improve the network performance.Some key parameters are used to measure the feasibility of the model, such as sensitivity (Se), specificity (Sp), F1-score (F1), accuracy (Acc), and area under each curve (AUC). Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed methods, which accuracy are 0.9686 on the DRIVE and 0.9746 on the CHASE DB1. The segmentation structure can assist the doctor in diagnosis more effectively.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273318 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 73318&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0273318
DOI: 10.1371/journal.pone.0273318
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().