EconPapers    
Economics at your fingertips  
 

A systematic review of clinical health conditions predicted by machine learning diagnostic and prognostic models trained or validated using real-world primary health care data

Hebatullah Abdulazeem, Sera Whitelaw, Gunther Schauberger and Stefanie J Klug

PLOS ONE, 2023, vol. 18, issue 9, 1-25

Abstract: With the advances in technology and data science, machine learning (ML) is being rapidly adopted by the health care sector. However, there is a lack of literature addressing the health conditions targeted by the ML prediction models within primary health care (PHC) to date. To fill this gap in knowledge, we conducted a systematic review following the PRISMA guidelines to identify health conditions targeted by ML in PHC. We searched the Cochrane Library, Web of Science, PubMed, Elsevier, BioRxiv, Association of Computing Machinery (ACM), and IEEE Xplore databases for studies published from January 1990 to January 2022. We included primary studies addressing ML diagnostic or prognostic predictive models that were supplied completely or partially by real-world PHC data. Studies selection, data extraction, and risk of bias assessment using the prediction model study risk of bias assessment tool were performed by two investigators. Health conditions were categorized according to international classification of diseases (ICD-10). Extracted data were analyzed quantitatively. We identified 106 studies investigating 42 health conditions. These studies included 207 ML prediction models supplied by the PHC data of 24.2 million participants from 19 countries. We found that 92.4% of the studies were retrospective and 77.3% of the studies reported diagnostic predictive ML models. A majority (76.4%) of all the studies were for models’ development without conducting external validation. Risk of bias assessment revealed that 90.8% of the studies were of high or unclear risk of bias. The most frequently reported health conditions were diabetes mellitus (19.8%) and Alzheimer’s disease (11.3%). Our study provides a summary on the presently available ML prediction models within PHC. We draw the attention of digital health policy makers, ML models developer, and health care professionals for more future interdisciplinary research collaboration in this regard.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274276 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 74276&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0274276

DOI: 10.1371/journal.pone.0274276

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0274276