EconPapers    
Economics at your fingertips  
 

Genetic algorithmic based approach for multiple-objective probabilistic fractional programming problem involving discrete random variables

Berhanu Belay and Adane Abebaw

PLOS ONE, 2022, vol. 17, issue 9, 1-14

Abstract: This manuscript presents a technique for solving a multiple-objective probabilistic fractional programming problem with discrete random variables. A multiple-objective probabilistic mathematical model is constructed with fractional objectives. In the model, some parameters of coefficients and right hand side parameters of restrictions are assumed as random variables having Pascal and Hyper geometric distributions. The feasibility of probabilistic constraints is checked by means of stochastic simulation. Genetic algorithm approach method is used to obtain the Pareto optimal solution of the proposed model without finding the deterministic model. Genetic algorithm parameters are fixed in all generation. The proposed method is coded by C++ programming language. To illustrate the method, a numerical example and practical example on the case of supply chain management are presented. The result shows that the values of the objective functions are conflicting each other.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274619 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 74619&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0274619

DOI: 10.1371/journal.pone.0274619

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0274619