EconPapers    
Economics at your fingertips  
 

Artificial intelligence automates the characterization of reversibly actuating planar-flow-casted NiTi shape memory alloy foil

Ritaban Dutta, Ling Chen, David Renshaw and Daniel Liang

PLOS ONE, 2022, vol. 17, issue 10, 1-16

Abstract: Nickel-Titanium (NiTi) shape memory alloys (SMAs) are smart materials able to recover their original shape under thermal stimulus. Near-net-shape NiTi SMA foils of 2 meters in length and width of 30 mm have been successfully produced by a planar flow casting facility at CSIRO, opening possibilities of wider applications of SMA foils. The study also focuses on establishing a fully automated experimental system for the characterisation of their reversible actuation, significantly improving SMA foils adaptation into real applications. Artificial Intelligence involving Computer Vision and Machine Learning based methods were successfully employed in the development of the automation SMA characterization process. The study finds that an Extreme Gradient Boosting (XGBoost) Regression model based predictive system experimented with over 175,000 video samples could achieve 99% overall prediction accuracy. Generalisation capability of the proposed system makes a significant contribution towards the efficient optimisation of the material design to produce high quality 30 mm SMA foils.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275485 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 75485&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0275485

DOI: 10.1371/journal.pone.0275485

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0275485