EconPapers    
Economics at your fingertips  
 

Rosetta FlexPepDock to predict peptide-MHC binding: An approach for non-canonical amino acids

Nathaniel Bloodworth, Natália Ruggeri Barbaro, Rocco Moretti, David G Harrison and Jens Meiler

PLOS ONE, 2022, vol. 17, issue 12, 1-16

Abstract: Computation methods that predict the binding of peptides to MHC-I are important tools for screening and identifying immunogenic antigens and have the potential to accelerate vaccine and drug development. However, most available tools are sequence-based and optimized only for peptides containing the twenty canonical amino acids. This omits a large number of peptides containing non-canonical amino acids (NCAA), or residues that undergo varied post-translational modifications such as glycosylation or phosphorylation. These modifications fundamentally alter peptide immunogenicity. Similarly, existing structure-based methods are biased towards canonical peptide backbone structures, which may or may not be preserved when NCAAs are present. Rosetta FlexPepDock ab-initio is a structure-based computational protocol able to evaluate peptide-receptor interaction where no prior information of the peptide backbone is known. We benchmarked FlexPepDock ab-initio for docking canonical peptides to MHC-I, and illustrate for the first time the method’s ability to accurately model MHC-I bound epitopes containing NCAAs. FlexPepDock ab-initio protocol was able to recapitulate near-native structures (≤1.5Å) in the top lowest-energy models for 20 out of 25 cases in our initial benchmark. Using known experimental binding affinities of twenty peptides derived from an influenza-derived peptide, we showed that FlexPepDock protocol is able to predict relative binding affinity as Rosetta energies correlate well with experimental values (r = 0.59, p = 0.006). ROC analysis revealed 80% true positive and a 40% false positive rate, with a prediction power of 93%. Finally, we demonstrate the protocol’s ability to accurately recapitulate HLA-A*02:01 bound phosphopeptide backbone structures and relative binding affinity changes, the theoretical structure of the lymphocytic choriomeningitis derived glycosylated peptide GP392 bound to MHC-I H-2Db, and isolevuglandin-adducted peptides. The ability to use non-canonical amino acids in the Rosetta FlexPepDock protocol may provide useful insight into critical amino acid positions where the post-translational modification modulates immunologic responses.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275759 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 75759&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0275759

DOI: 10.1371/journal.pone.0275759

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-03
Handle: RePEc:plo:pone00:0275759