Guiding crowds when facing limited compliance: Simulating strategies
Christina Maria Mayr and
Gerta Köster
PLOS ONE, 2022, vol. 17, issue 11, 1-24
Abstract:
At traffic hubs, it is important to avoid congestion of pedestrian streams to ensure safety and a good level of service. This presents a challenge, since distributing crowds on different routes is much more difficult than opening valves to, for example, regulate fluid flow. Humans may or may not comply with re-directions suggested to them typically with the help of signage, loudspeakers, apps, or by staff. This remains true, even if they perceive and understand the suggestions. Yet, simulation studies so far have neglected the influence of compliance. In view of this, we complement a state-of-the-art model of crowd motion and crowd behavior, so that we can vary the compliance rate. We consider an abstracted scenario that is inspired by a metro station in the city of Munich, where traffic regulators wish to make some passengers abandon the obviously shortest route so that the flow evens out. We investigate the effect of compliance for two very simple guiding strategies. In the first strategy, we alternate routes. In the second strategy, we recommend the path with the lowest crowd density. We observe that, in both cases, it suffices to reroute a small fraction of the crowd to reduce travel times. But we also find that taking densities into account is much more efficient when facing low compliance rates.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276229 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 76229&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0276229
DOI: 10.1371/journal.pone.0276229
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().