Considerate motion imagination classification method using deep learning
Zhaokun Yan,
Xiangquan Yang and
Yu Jin
PLOS ONE, 2022, vol. 17, issue 10, 1-16
Abstract:
In order to improve the classification accuracy of motion imagination, a considerate motion imagination classification method using deep learning is proposed. Specifically, based on a graph structure suitable for electroencephalography as input, the proposed model can accurately represent the distribution of electroencephalography electrodes in non-Euclidean space and fully consider the spatial correlation between electrodes. In addition, the spatial-spectral-temporal multi-dimensional feature information was extracted from the spatial-temporal graph representation and spatial-spectral graph representation transformed from the original electroencephalography signal using the dual branch architecture. Finally, the attention mechanism and global feature aggregation module were designed and combined with graph convolution to adaptively capture the dynamic correlation intensity and effective feature of electroencephalography signals in various dimensions. A series of contrast experiments and ablation experiments on several different public brain-computer interface datasets demonstrated that the excellence of proposed method. It is worth mentioning that, the proposed model is a general framework for the classification of electroencephalography signals, which is suitable for emotion recognition, sleep staging and other fields based on electroencephalography research. Moreover, the model has the potential to be applied in the medical field of motion imagination rehabilitation in real life.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276526 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 76526&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0276526
DOI: 10.1371/journal.pone.0276526
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().