3D CNN for neuropsychiatry: Predicting Autism with interpretable Deep Learning applied to minimally preprocessed structural MRI data
Mélanie Garcia and
Clare Kelly
PLOS ONE, 2024, vol. 19, issue 10, 1-24
Abstract:
Predictive modeling approaches are enabling progress toward robust and reproducible brain-based markers of neuropsychiatric conditions by leveraging the power of multivariate analyses of large datasets. While deep learning (DL) offers another promising avenue to further advance progress, there are challenges related to implementation in 3D (best for MRI) and interpretability. Here, we address these challenges and describe an interpretable predictive pipeline for inferring Autism diagnosis using 3D DL applied to minimally processed structural MRI scans. We trained 3D DL models to predict Autism diagnosis using the openly available ABIDE I and II datasets (n = 1329, split into training, validation, and test sets). Importantly, we did not perform transformation to template space, to reduce bias and maximize sensitivity to structural alterations associated with Autism. Our models attained predictive accuracies equivalent to those of previous machine learning (ML) studies, while side-stepping the time- and resource-demanding requirement to first normalize data to a template. Our interpretation step, which identified brain regions that contributed most to accurate inference, revealed regional Autism-related alterations that were highly consistent with the literature, encompassing a left-lateralized network of regions supporting language processing. We have openly shared our code and models to enable further progress towards remaining challenges, such as the clinical heterogeneity of Autism and site effects, and to enable the extension of our method to other neuropsychiatric conditions.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276832 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 76832&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0276832
DOI: 10.1371/journal.pone.0276832
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().