Comparing modelling approaches for the estimation of government intervention effects in COVID-19: Impact of voluntary behavior changes
Lun Liu,
Zhu Zhang,
Hui Wang,
Shenhao Wang,
Shengsheng Zhuang and
Jishan Duan
PLOS ONE, 2023, vol. 18, issue 2, 1-13
Abstract:
The efficacy of government interventions in epidemic has become a hot subject since the onset of COVID-19. There is however much variation in the results quantifying the effects of interventions, which is partly related to the varying modelling approaches employed by existing studies. Among the many factors affecting the modelling results, people’s voluntary behavior change is less examined yet likely to be widespread. This paper therefore aims to analyze how the choice of modelling approach, in particular how voluntary behavior change is accounted for, would affect the intervention effect estimation. We conduct the analysis by experimenting different modelling methods on a same data set composed of the 500 most infected U.S. counties. We compare the most frequently used methods from the two classes of modelling approaches, which are Bayesian hierarchical model from the class of computational approach and difference-in-difference from the class of natural experimental approach. We find that computational methods that do not account for voluntary behavior changes are likely to produce larger estimates of intervention effects as assumed. In contrast, natural experimental methods are more likely to extract the true effect of interventions by ruling out simultaneous behavior change. Among different difference-in-difference estimators, the two-way fixed effect estimator seems to be an efficient one. Our work can inform the methodological choice of future research on this topic, as well as more robust re-interpretation of existing works, to facilitate both future epidemic response plans and the science of public health.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276906 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 76906&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0276906
DOI: 10.1371/journal.pone.0276906
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().