Data-driven models for atmospheric air temperature forecasting at a continental climate region
Mohamed Khalid Alomar,
Faidhalrahman Khaleel,
Mustafa M Aljumaily,
Adil Masood,
Siti Fatin Mohd Razali,
Mohammed Abdulhakim AlSaadi,
Nadhir Al-Ansari and
Mohammed Majeed Hameed
PLOS ONE, 2022, vol. 17, issue 11, 1-31
Abstract:
Atmospheric air temperature is the most crucial metrological parameter. Despite its influence on multiple fields such as hydrology, the environment, irrigation, and agriculture, this parameter describes climate change and global warming quite well. Thus, accurate and timely air temperature forecasting is essential because it provides more important information that can be relied on for future planning. In this study, four Data-Driven Approaches, Support Vector Regression (SVR), Regression Tree (RT), Quantile Regression Tree (QRT), ARIMA, Random Forest (RF), and Gradient Boosting Regression (GBR), have been applied to forecast short-, and mid-term air temperature (daily, and weekly) over North America under continental climatic conditions. The time-series data is relatively long (2000 to 2021), 70% of the data are used for model calibration (2000 to 2015), and the rest are used for validation. The autocorrelation and partial autocorrelation functions have been used to select the best input combination for the forecasting models. The quality of predicting models is evaluated using several statistical measures and graphical comparisons. For daily scale, the SVR has generated more accurate estimates than other models, Root Mean Square Error (RMSE = 3.592°C), Correlation Coefficient (R = 0.964), Mean Absolute Error (MAE = 2.745°C), and Thiels’ U-statistics (U = 0.127). Besides, the study found that both RT and SVR performed very well in predicting weekly temperature. This study discovered that the duration of the employed data and its dispersion and volatility from month to month substantially influence the predictive models’ efficacy. Furthermore, the second scenario is conducted using the randomization method to divide the data into training and testing phases. The study found the performance of the models in the second scenario to be much better than the first one, indicating that climate change affects the temperature pattern of the studied station. The findings offered technical support for generating high-resolution daily and weekly temperature forecasts using Data-Driven Methodologies.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277079 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 77079&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0277079
DOI: 10.1371/journal.pone.0277079
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().