EconPapers    
Economics at your fingertips  
 

A supervised topic embedding model and its application

Weiran Xu and Koji Eguchi

PLOS ONE, 2022, vol. 17, issue 11, 1-18

Abstract: We propose rTopicVec, a supervised topic embedding model that predicts response variables associated with documents by analyzing the text data. Topic modeling leverages document-level word co-occurrence patterns to learn latent topics of each document. While word embedding is a promising text analysis technique in which words are mapped into a low-dimensional continuous semantic space by exploiting the local word co-occurrence patterns within a small context window. Recently developed topic embedding benefits from combining those two approaches by modeling latent topics in a word embedding space. Our proposed rTopicVec and its regularized variant incorporate regression into the topic embedding model to model each document and a numerical label paired with the document jointly. In addition, our models yield topics predictive of the response variables as well as predict response variables for unlabeled documents. We evaluated the effectiveness of our models through experiments on two regression tasks: predicting stock return rates using news articles provided by Thomson Reuters and predicting movie ratings using movie reviews. Results showed that the prediction performance of our models was more accurate in comparison to three baselines with a statistically significant difference.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277104 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 77104&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0277104

DOI: 10.1371/journal.pone.0277104

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0277104