Associations between resting state functional brain connectivity and childhood anhedonia: A reproduction and replication study
Yi Zhou,
Narun Pat and
Michael C Neale
PLOS ONE, 2023, vol. 18, issue 5, 1-31
Abstract:
Background: Previously, a study using a sample of the Adolescent Brain Cognitive Development (ABCD)® study from the earlier 1.0 release found differences in several resting state functional MRI (rsfMRI) brain connectivity measures associated with children reporting anhedonia. Here, we aim to reproduce, replicate, and extend the previous findings using data from the later ABCD study 4.0 release, which includes a significantly larger sample. Methods: To reproduce and replicate the previous authors’ findings, we analyzed data from the ABCD 1.0 release (n = 2437), from an independent subsample from the newer ABCD 4.0 release (excluding individuals from the 1.0 release) (n = 6456), and from the full ABCD 4.0 release sample (n = 8866). Additionally, we assessed whether using a multiple linear regression approach could improve replicability by controlling for the effects of comorbid psychiatric conditions and sociodemographic covariates. Results: While the previously reported associations were reproducible, effect sizes for most rsfMRI measures were drastically reduced in replication analyses (including for both t-tests and multiple linear regressions) using the ABCD 4.0 (excluding 1.0) sample. However, 2 new rsfMRI measures (the Auditory vs. Right Putamen and the Retrosplenial-Temporal vs. Right-Thalamus-Proper measures) exhibited replicable associations with anhedonia and stable, albeit small, effect sizes across the ABCD samples, even after accounting for sociodemographic covariates and comorbid psychiatric conditions using a multiple linear regression approach. Conclusion: The most statistically significant associations between anhedonia and rsfMRI connectivity measures found in the ABCD 1.0 sample tended to be non-replicable and inflated. Contrastingly, replicable associations exhibited smaller effects with less statistical significance in the ABCD 1.0 sample. Multiple linear regressions helped assess the specificity of these findings and control the effects of confounding covariates.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277158 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 77158&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0277158
DOI: 10.1371/journal.pone.0277158
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().