EconPapers    
Economics at your fingertips  
 

FRAME—Monte Carlo model for evaluation of the stable isotope mixing and fractionation

Maciej P Lewicki, Dominika Lewicka-Szczebak and Grzegorz Skrzypek

PLOS ONE, 2022, vol. 17, issue 11, 1-29

Abstract: Bayesian stable isotope mixing models are widely used in geochemical and ecological studies for partitioning sources that contribute to various mixtures. However, none of the existing tools allows accounting for the influence of processes other than mixing, especially stable isotope fractionation. Bridging this gap, new software for the stable isotope Fractionation And Mixing Evaluation (FRAME) has been developed with a user-friendly graphical interface (malewick.github.io/frame). This calculation tool allows simultaneous sources partitioning and fractionation progress determination based on the stable isotope composition of sources/substrates and mixture/products. The mathematical algorithm applies the Markov-Chain Monte Carlo model to estimate the contribution of individual sources and processes, as well as the probability distributions of the calculated results. The performance of FRAME was comprehensively tested and practical applications of this modelling tool are presented with simple theoretical examples and stable isotope case studies for nitrates, nitrites, water and nitrous oxide. The open mathematical design, featuring custom distributions of source isotope signatures, allows for the implementation of additional processes that alternate the characteristics of the final mixture and its application for various range of studies.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277204 (text/html)
https://journals.plos.org/plosone/article?id=10.13 ... 77204&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0277204

DOI: 10.1371/journal.pone.0277204

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0277204