EconPapers    
Economics at your fingertips  
 

Addressing people’s current and future states in a reinforcement learning algorithm for persuading to quit smoking and to be physically active

Nele Albers, Mark A Neerincx and Willem-Paul Brinkman

PLOS ONE, 2022, vol. 17, issue 12, 1-31

Abstract: Behavior change applications often assign their users activities such as tracking the number of smoked cigarettes or planning a running route. To help a user complete these activities, an application can persuade them in many ways. For example, it may help the user create a plan or mention the experience of peers. Intuitively, the application should thereby pick the message that is most likely to be motivating. In the simplest case, this could be the message that has been most effective in the past. However, one could consider several other elements in an algorithm to choose a message. Possible elements include the user’s current state (e.g., self-efficacy), the user’s future state after reading a message, and the user’s similarity to the users on which data has been gathered. To test the added value of subsequently incorporating these elements into an algorithm that selects persuasive messages, we conducted an experiment in which more than 500 people in four conditions interacted with a text-based virtual coach. The experiment consisted of five sessions, in each of which participants were suggested a preparatory activity for quitting smoking or increasing physical activity together with a persuasive message. Our findings suggest that adding more elements to the algorithm is effective, especially in later sessions and for people who thought the activities were useful. Moreover, while we found some support for transferring knowledge between the two activity types, there was rather low agreement between the optimal policies computed separately for the two activity types. This suggests limited policy generalizability between activities for quitting smoking and those for increasing physical activity. We see our results as supporting the idea of constructing more complex persuasion algorithms. Our dataset on 2,366 persuasive messages sent to 671 people is published together with this article for researchers to build on our algorithm.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277295 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 77295&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0277295

DOI: 10.1371/journal.pone.0277295

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0277295