EconPapers    
Economics at your fingertips  
 

DAE-ConvBiLSTM: End-to-end learning single-lead electrocardiogram signal for heart abnormalities detection

Bambang Tutuko, Annisa Darmawahyuni, Siti Nurmaini, Alexander Edo Tondas, Muhammad Naufal Rachmatullah, Samuel Benedict Putra Teguh, Firdaus Firdaus, Ade Iriani Sapitri and Rossi Passarella

PLOS ONE, 2022, vol. 17, issue 12, 1-14

Abstract: Background: The electrocardiogram (ECG) is a widely used diagnostic that observes the heart activities of patients to ascertain a heart abnormality diagnosis. The artifacts or noises are primarily associated with the problem of ECG signal processing. Conventional denoising techniques have been proposed in previous literature; however, some lacks, such as the determination of suitable wavelet basis function and threshold, can be a time-consuming process. This paper presents end-to-end learning using a denoising auto-encoder (DAE) for denoising algorithms and convolutional-bidirectional long short-term memory (ConvBiLSTM) for ECG delineation to classify ECG waveforms in terms of the PQRST-wave and isoelectric lines. The denoising reconstruction using unsupervised learning based on the encoder-decoder process can be proposed to improve the drawbacks. First, The ECG signals are reduced to a low-dimensional vector in the encoder. Second, the decoder reconstructed the signals. The last, the reconstructed signals of ECG can be processed to ConvBiLSTM. The proposed architecture of DAE-ConvBiLSTM is the end-to-end diagnosis of heart abnormality detection. Results: As a result, the performance of DAE-ConvBiLSTM has obtained an average of above 98.59% accuracy, sensitivity, specificity, precision, and F1 score from the existing studies. The DAE-ConvBiLSTM has also experimented with detecting T-wave (due to ventricular repolarisation) morphology abnormalities. Conclusion: The development architecture for detecting heart abnormalities using an unsupervised learning DAE and supervised learning ConvBiLSTM can be proposed for an end-to-end learning algorithm. In the future, the precise accuracy of the ECG main waveform will affect heart abnormalities detection in clinical practice.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277932 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 77932&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0277932

DOI: 10.1371/journal.pone.0277932

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0277932