Machine learning for prediction of postoperative nausea and vomiting in patients with intravenous patient-controlled analgesia
Jae-Geum Shim,
Kyoung-Ho Ryu,
Eun-Ah Cho,
Jin Hee Ahn,
Yun Byeong Cha,
Goeun Lim and
Sung Hyun Lee
PLOS ONE, 2022, vol. 17, issue 12, 1-11
Abstract:
Background: Postoperative nausea and vomiting (PONV) is a still highly relevant problem and is known to be a distressing side effect in patients. The aim of this study was to develop a machine learning model to predict PONV up to 24 h with fentanyl-based intravenous patient-controlled analgesia (IV-PCA). Methods: From July 2019 and July 2020, data from 2,149 patients who received fentanyl-based IV-PCA for analgesia after non-cardiac surgery under general anesthesia were applied to develop predictive models. The rates of PONV at 1 day after surgery were measured according to patient characteristics as well as anesthetic, surgical, or PCA-related factors. All statistical analyses and computations were performed using the R software. Results: A total of 2,149 patients were enrolled in this study, 337 of whom (15.7%) experienced PONV. After applying the machine-learning algorithm and Apfel model to the test dataset to predict PONV, we found that the area under the receiver operating characteristic curve using logistic regression was 0.576 (95% confidence interval [CI], 0.520–0.633), k-nearest neighbor was 0.597 (95% CI, 0.537–0.656), decision tree was 0.561 (95% CI, 0.498–0.625), random forest was 0.610 (95% CI, 0.552–0.668), gradient boosting machine was 0.580 (95% CI, 0.520–0.639), support vector machine was 0.649 (95% CI, 0.592–0.707), artificial neural network was 0.686 (95% CI, 0.630–0.742), and Apfel model was 0.643 (95% CI, 0.596–0.690). Conclusions: We developed and validated machine learning models for predicting PONV in the first 24 h. The machine learning model showed better performance than the Apfel model in predicting PONV.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277957 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 77957&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0277957
DOI: 10.1371/journal.pone.0277957
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().