A novel customer churn prediction model for the telecommunication industry using data transformation methods and feature selection
Joydeb Kumar Sana,
Mohammad Zoynul Abedin,
M Sohel Rahman and
M Saifur Rahman
PLOS ONE, 2022, vol. 17, issue 12, 1-21
Abstract:
Customer churn is one of the most critical issues faced by the telecommunication industry (TCI). Researchers and analysts leverage customer relationship management (CRM) data through the use of various machine learning models and data transformation methods to identify the customers who are likely to churn. While several studies have been conducted in the customer churn prediction (CCP) context in TCI, a review of performance of the various models stemming from these studies show a clear room for improvement. Therefore, to improve the accuracy of customer churn prediction in the telecommunication industry, we have investigated several machine learning models, as well as, data transformation methods. To optimize the prediction models, feature selection has been performed using univariate technique and the best hyperparameters have been selected using the grid search method. Subsequently, experiments have been conducted on several publicly available TCI datasets to assess the performance of our models in terms of the widely used evaluation metrics, such as AUC, precision, recall, and F-measure. Through a rigorous experimental study, we have demonstrated the benefit of applying data transformation methods as well as feature selection while training an optimized CCP model. Our proposed technique improved the prediction performance by up to 26.2% and 17% in terms of AUC and F-measure, respectively.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278095 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78095&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0278095
DOI: 10.1371/journal.pone.0278095
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().