EconPapers    
Economics at your fingertips  
 

clusTransition: An R package for monitoring transition in cluster solutions of temporal datasets

Muhammad Atif and Friedrich Leisch

PLOS ONE, 2022, vol. 17, issue 12, 1-20

Abstract: Clustering analysis’ primary purpose is to divide a dataset into a finite number of segments based on the similarities between items. In recent years, a significant amount of study has focused on the spatio-temporal aspects of clustering. However, clusters are no longer regarded as static objects since changes influence them in the underlying population. This paper describes an R package implementing the MONIC framework for tracing the evolution of clusters extracted from temporal datasets. The name of the package is clusTransition, which stands for Cluster Transition. The algorithm is based on re-clustering cumulative datasets that evolve at successive time-points and monitoring the transitions experienced by the clusters in these clustering solutions. This paper’s contribution is to demonstrate how the package clusTransition is developed in the R programming language, and its workflow is discussed using hypothetical and real-life datasets.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278146 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78146&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0278146

DOI: 10.1371/journal.pone.0278146

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0278146