EconPapers    
Economics at your fingertips  
 

Physician preference for receiving machine learning predictive results: A cross-sectional multicentric study

Roberta Moreira Wichmann, Thales Pardini Fagundes, Tiago Almeida de Oliveira, André Filipe de Moraes Batista and Alexandre Dias Porto Chiavegatto Filho

PLOS ONE, 2022, vol. 17, issue 12, 1-19

Abstract: Artificial intelligence (AI) algorithms are transforming several areas of the digital world and are increasingly being applied in healthcare. Mobile apps based on predictive machine learning models have the potential to improve health outcomes, but there is still no consensus on how to inform doctors about their results. The aim of this study was to investigate how healthcare professionals prefer to receive predictions generated by machine learning algorithms. A systematic search in MEDLINE, via PubMed, EMBASE and Web of Science was first performed. We developed a mobile app, RandomIA, to predict the occurrence of clinical outcomes, initially for COVID-19 and later expected to be expanded to other diseases. A questionnaire called System Usability Scale (SUS) was selected to assess the usability of the mobile app. A total of 69 doctors from the five regions of Brazil tested RandomIA and evaluated three different ways to visualize the predictions. For prognostic outcomes (mechanical ventilation, admission to an intensive care unit, and death), most doctors (62.9%) preferred a more complex visualization, represented by a bar graph with three categories (low, medium, and high probability) and a probability density graph for each outcome. For the diagnostic prediction of COVID-19, there was also a majority preference (65.4%) for the same option. Our results indicate that doctors could be more inclined to prefer receiving detailed results from predictive machine learning algorithms.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278397 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78397&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0278397

DOI: 10.1371/journal.pone.0278397

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0278397