EconPapers    
Economics at your fingertips  
 

Multi-store collaborative delivery optimization based on Top-K order-split

Yanju Zhang, Liping Ou and Jiaxu Liu

PLOS ONE, 2023, vol. 18, issue 3, 1-22

Abstract: Regarding the fulfillment optimization of online retail orders, many researchers focus more on warehouse optimization and distribution center optimization. However, under the background of new retailing, traditional retailers carry out online services, forming an order fulfillment model with physical stores as front warehouses. Studies that focus on physical stores and consider both order splitting and store delivery are rare, which cannot meet the order optimization needs of traditional retailers. To this end, this study proposes a new problem called the “Multi-Store Collaborative Delivery Optimization (MCDO)”, in which not only make the order-split plans for stores but also design the order-delivery routes for them, such that the order fulfillment cost is minimized. To solve the problem, a Top-K breadth-first search and a local search are integrated to construct a hybrid heuristic algorithm, named “Top-K Recommendation & Improved Local Search (TKILS)”. This study optimizes the search efficiency of the breadth-first search by controlling the number of sub-orders and improving the initial solution of the local search using a greedy cost function. Then achieve the joint optimization of order-split and order-delivery by improving the local optimization operators. Finally, extensive experiments on synthetic and real datasets validate the effectiveness and applicability of the algorithm this study proposed.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278690 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78690&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0278690

DOI: 10.1371/journal.pone.0278690

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0278690