EconPapers    
Economics at your fingertips  
 

Semantic segmentation of UAV remote sensing images based on edge feature fusing and multi-level upsampling integrated with Deeplabv3+

Xiaolong Li, Yuyin Li, Jinquan Ai, Zhaohan Shu, Jing Xia and Yuanping Xia

PLOS ONE, 2023, vol. 18, issue 1, 1-16

Abstract: Deeplabv3+ currently is the most representative semantic segmentation model. However, Deeplabv3+ tends to ignore targets of small size and usually fails to identify precise segmentation boundaries in the UAV remote sensing image segmentation task. To handle these problems, this paper proposes a semantic segmentation algorithm of UAV remote sensing images based on edge feature fusing and multi-level upsampling integrated with Deeplabv3+ (EMNet). EMNet uses MobileNetV2 as its backbone and adds an edge detection branch in the encoder to provide edge information for semantic segmentation. In the decoder, a multi-level upsampling method is designed to retain high-level semantic information (e.g., the target’s location and boundary information). The experimental results show that the mIoU and mPA of EMNet improved over Deeplabv3+ by 7.11% and 6.93% on the dataset UAVid, and by 0.52% and 0.22% on the dataset ISPRS Vaihingen.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279097 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 79097&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0279097

DOI: 10.1371/journal.pone.0279097

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-03
Handle: RePEc:plo:pone00:0279097