Extracting patient-level data from the electronic health record: Expanding opportunities for health system research
Erica Farrand,
Harold R Collard,
Michael Guarnieri,
George Minowada,
Lawrence Block,
Mei Lee and
Carlos Iribarren
PLOS ONE, 2023, vol. 18, issue 3, 1-12
Abstract:
Background: Epidemiological studies of interstitial lung disease (ILD) are limited by small numbers and tertiary care bias. Investigators have leveraged the widespread use of electronic health records (EHRs) to overcome these limitations, but struggle to extract patient-level, longitudinal clinical data needed to address many important research questions. We hypothesized that we could automate longitudinal ILD cohort development using the EHR of a large, community-based healthcare system. Study design and methods: We applied a previously validated algorithm to the EHR of a community-based healthcare system to identify ILD cases between 2012–2020. We then extracted disease-specific characteristics and outcomes using fully automated data-extraction algorithms and natural language processing of selected free-text. Results: We identified a community cohort of 5,399 ILD patients (prevalence = 118 per 100,000). Pulmonary function tests (71%) and serologies (54%) were commonly used in the diagnostic evaluation, whereas lung biopsy was rare (5%). IPF was the most common ILD diagnosis (n = 972, 18%). Prednisone was the most commonly prescribed medication (911, 17%). Nintedanib and pirfenidone were rarely prescribed (n = 305, 5%). ILD patients were high-utilizers of inpatient (40%/year hospitalized) and outpatient care (80%/year with pulmonary visit), with sustained utilization throughout the post-diagnosis study period. Discussion: We demonstrated the feasibility of robustly characterizing a variety of patient-level utilization and health services outcomes in a community-based EHR cohort. This represents a substantial methodological improvement by alleviating traditional constraints on the accuracy and clinical resolution of such ILD cohorts; we believe this approach will make community-based ILD research more efficient, effective, and scalable.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280342 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 80342&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0280342
DOI: 10.1371/journal.pone.0280342
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().