Accurate bundle matching and generation via multitask learning with partially shared parameters
Hyunsik Jeon,
Jun-Gi Jang,
Taehun Kim and
U Kang
PLOS ONE, 2023, vol. 18, issue 3, 1-20
Abstract:
How can we recommend existing bundles to users accurately? How can we generate new tailored bundles for users? Recommending a bundle, or a group of various items, has attracted widespread attention in e-commerce owing to the increased satisfaction of both users and providers. Bundle matching and bundle generation are two representative tasks in bundle recommendation. The bundle matching task is to correctly match existing bundles to users while the bundle generation is to generate new bundles that users would prefer. Although many recent works have developed bundle recommendation models, they fail to achieve high accuracy since they do not handle heterogeneous data effectively and do not learn a method for customized bundle generation. In this paper, we propose BundleMage, an accurate approach for bundle matching and generation. BundleMage effectively mixes user preferences of items and bundles using an adaptive gate technique to achieve high accuracy for the bundle matching. BundleMage also generates a personalized bundle by learning a generation module that exploits a user preference and the characteristic of a given incomplete bundle to be completed. BundleMage further improves its performance using multi-task learning with partially shared parameters. Through extensive experiments, we show that BundleMage achieves up to 6.6% higher nDCG in bundle matching and 6.3× higher nDCG in bundle generation than the best competitors. We also provide qualitative analysis that BundleMage effectively generates bundles considering both the tastes of users and the characteristics of target bundles.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280630 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 80630&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0280630
DOI: 10.1371/journal.pone.0280630
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().