SPNet: Structure preserving network for depth completion
Tao Li,
Songning Luo,
Zhiwei Fan,
Qunbing Zhou and
Ting Hu
PLOS ONE, 2023, vol. 18, issue 1, 1-19
Abstract:
Depth completion aims to predict a dense depth map from a sparse one. Benefiting from the powerful ability of convolutional neural networks, recent depth completion methods have achieved remarkable performance. However, it is still a challenging problem to well preserve accurate depth structures, such as tiny structures and object boundaries. To tackle this problem, we propose a structure preserving network (SPNet) in this paper. Firstly, an efficient multi-scale gradient extractor (MSGE) is proposed to extract useful multi-scale gradient images, which contain rich structural information that is helpful in recovering accurate depth. The MSGE is constructed based on the proposed semi-fixed depthwise separable convolution. Meanwhile, we adopt a stable gradient MAE loss (LGMAE) to provide additional depth gradient constrain for better structure reconstruction. Moreover, a multi-level feature fusion module (MFFM) is proposed to adaptively fuse the spatial details from low-level encoder and the semantic information from high-level decoder, which will incorporate more structural details into the depth modality. As demonstrated by experiments on NYUv2 and KITTI datasets, our method outperforms some state-of-the-art methods in terms of both quantitative and quantitative evaluations.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280886 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 80886&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0280886
DOI: 10.1371/journal.pone.0280886
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().