EconPapers    
Economics at your fingertips  
 

Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model

Weibing Jia, Yubin Zhang, Zhengying Wei, Zhenhao Zheng and Peijun Xie

PLOS ONE, 2023, vol. 18, issue 4, 1-25

Abstract: The shortage of available water resources and climate change are major factors affecting agricultural irrigation. In order to improve the irrigation water use efficiency, it is necessary to predict the water requirements for crops in advance. Reference evapotranspiration (ETo) is a hypothetical standard reference crop evapotranspiration, many types of artificial intelligence models have been applied to predict ETo; However, there are still few in the literature regarding the application of hybrid models for deep learning model parameters optimization. This paper proposes two hybrid models based on particle swarm optimization (PSO) and long-short-term memory (LSTM) neural network, used to predict ETo at the four climate stations, Shaanxi province, China. These two hybrid models were trained using 40 years of historical data, and the PSO was used to optimize the hyperparameters in the LSTM network. We applied the optimized model to predict the daily ETo in 2019 under different datasets, the result showed that the optimized model has good prediction accuracy. The optimized hybrid models can help farmers and irrigation planners to make plan earlier and precisely, and can provide valuable information to improve tasks such as irrigation planning.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281478 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 81478&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0281478

DOI: 10.1371/journal.pone.0281478

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0281478