EconPapers    
Economics at your fingertips  
 

Power fingerprint identification based on the improved V-I trajectory with color encoding and transferred CBAM-ResNet

Lin Lin, Jie Zhang, Xu Gao, Jiancheng Shi, Cheng Chen and Nantian Huang

PLOS ONE, 2023, vol. 18, issue 2, 1-23

Abstract: In power fingerprint identification, feature information is insufficient when using a single feature to identify equipment, and small load data of specific customers, difficult to meet the refined equipment classification needs. A power fingerprint identification based on the improved voltage-current(V-I) trajectory with color encoding and transferred CBAM-ResNet34 is proposed. First, the current, instantaneous power, and trajectory momentum information are added to the original V-I trajectory image using color coding to obtain a color V-I trajectory image. Then, the ResNet34 model was pre-trained using the ImageNet dataset and a new fully-connected layer meeting the device classification goal was used to replace the fully-connected layer of ResNet34. The Convolutional Block Attention Module (CBAM) was added to each residual structure module of ResNet34. Finally, Class-Balanced (CB) loss is introduced to reweight the Softmax cross-entropy (SM-CE) loss function to solve the problem of data imbalance in V-I trajectory identification. All parameters are retrained to extract features from the color V-I trajectory images for device classification. The experimental results on the imbalanced PLAID dataset verify that the method in this paper has better classification capability in small sample imbalanced datasets. The experimental results show that the method effectively improves the identification accuracy by 4.4% and reduces the training time of the model by 14 minutes compared with the existing methods, which meets the accuracy requirements of fine-grained power fingerprint identification.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281482 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 81482&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0281482

DOI: 10.1371/journal.pone.0281482

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0281482