EconPapers    
Economics at your fingertips  
 

Computing mathematical functions with chemical reactions via stochastic logic

Arnav Solanki, Tonglin Chen and Marc Riedel

PLOS ONE, 2023, vol. 18, issue 5, 1-26

Abstract: This paper presents a novel strategy for computing mathematical functions with molecular reactions, based on theory from the realm of digital design. It demonstrates how to design chemical reaction networks based on truth tables that specify analog functions, computed by stochastic logic. The theory of stochastic logic entails the use of random streams of zeros and ones to represent probabilistic values. A link is made between the representation of random variables with stochastic logic on the one hand, and the representation of variables in molecular systems as the concentration of molecular species, on the other. Research in stochastic logic has demonstrated that many mathematical functions of interest can be computed with simple circuits built with logic gates. This paper presents a general and efficient methodology for translating mathematical functions computed by stochastic logic circuits into chemical reaction networks. Simulations show that the computation performed by the reaction networks is accurate and robust to variations in the reaction rates, within a log-order constraint. Reaction networks are given that compute functions for applications such as image and signal processing, as well as machine learning: arctan, exponential, Bessel, and sinc. An implementation is proposed with a specific experimental chassis: DNA strand displacement with units called DNA “concatemers”.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281574 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 81574&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0281574

DOI: 10.1371/journal.pone.0281574

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0281574