EconPapers    
Economics at your fingertips  
 

Conditional autoencoder asset pricing models for the Korean stock market

Eunchong Kim, Taehee Cho, Bonha Koo and Hyoung-Goo Kang

PLOS ONE, 2023, vol. 18, issue 7, 1-30

Abstract: This study analyzes the explanatory power of the latent factor conditional asset pricing model for the Korean stock market using an autoencoder. The autoencoder is a type of neural network in machine learning that can extract latent factors. Specifically, we apply the conditional autoencoder (CA) model that estimates factor exposure as a flexible nonlinear function of covariates. Our main findings are as follows. The CA model showed excellent explanatory power not only in the entire sample but also in several subsamples in the Korean market. Also, because of this explanatory power, it can better explain market anomalies compared to the traditional asset pricing models. As a result of examining investment strategies using pricing error, the CA model measures the expected return of stocks better than the traditional asset pricing model. In addition, the CA model indicates that the firm characteristic variables are important in asset pricing conditional on macro-financial states, such as the global financial crisis and the coronavirus disease 2019 pandemic. The result shows that the major variables considered in the explanation of stock returns through the CA model may vary depending on the time. This is expected to provide a broader perspective on asset pricing through the CA model in the future.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281783 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 81783&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0281783

DOI: 10.1371/journal.pone.0281783

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0281783