Comparison of Bayesian methods for incorporating adult clinical trial data to improve certainty of treatment effect estimates in children
Ruth Walker,
Bob Phillips and
Sofia Dias
PLOS ONE, 2023, vol. 18, issue 6, 1-11
Abstract:
There are challenges associated with recruiting children to take part in randomised clinical trials and as a result, compared to adults, in many disease areas we are less certain about which treatments are most safe and effective. This can lead to weaker recommendations about which treatments to prescribe in practice. However, it may be possible to ‘borrow strength’ from adult evidence to improve our understanding of which treatments work best in children, and many different statistical methods are available to conduct these analyses. In this paper we discuss four Bayesian methods for extrapolating adult clinical trial evidence to children. Using an exemplar dataset, we compare the effect of their modelling assumptions on the estimated treatment effect and associated heterogeneity. These modelling assumptions range from adult evidence being completely generalisable to being completely unrelated to the children’s evidence. We finally discuss the appropriateness of these modelling assumptions in the context of estimating treatment effect in children.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281791 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 81791&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0281791
DOI: 10.1371/journal.pone.0281791
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().