EconPapers    
Economics at your fingertips  
 

Fast and accurate interpretation of workload classification model

Sooyeon Shim, Doyeon Kim, Jun-Gi Jang, Suhyun Chae, Jeeyong Lee and U Kang

PLOS ONE, 2023, vol. 18, issue 3, 1-17

Abstract: How can we interpret predictions of a workload classification model? A workload is a sequence of operations executed in DRAM, where each operation contains a command and an address. Classifying a given sequence into a correct workload type is important for verifying the quality of DRAM. Although a previous model achieves a reasonable accuracy on workload classification, it is challenging to interpret the prediction results since it is a black box model. A promising direction is to exploit interpretation models which compute the amount of attribution each feature gives to the prediction. However, none of the existing interpretable models are tailored for workload classification. The main challenges to be addressed are to 1) provide interpretable features for further improving interpretability, 2) measure the similarity of features for constructing the interpretable super features, and 3) provide consistent interpretations over all instances. In this paper, we propose INFO (INterpretable model For wOrkload classification), a model-agnostic interpretable model which analyzes workload classification results. INFO provides interpretable results while producing accurate predictions. We design super features to enhance interpretability by hierarchically clustering original features used for the classifier. To generate the super features, we define and measure the interpretability-friendly similarity, a variant of Jaccard similarity between original features. Then, INFO globally explains the workload classification model by generalizing super features over all instances. Experiments show that INFO provides intuitive interpretations which are faithful to the original non-interpretable model. INFO also shows up to 2.0× faster running time than the competitor while having comparable accuracies for real-world workload datasets.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282595 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 82595&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0282595

DOI: 10.1371/journal.pone.0282595

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0282595